

Continuity

A function $f: X \to \mathbb{R}$ is *continuous* at *c* if

for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in X$,

$$
|x-c| < \delta \Rightarrow |f(x)-f(c)| < \varepsilon
$$

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have:

$$
|f(x) - f(c)| = |\sin(x) - \sin(c)|
$$

=
$$
\left|2\sin\left(\frac{x-c}{2}\right)\cos\left(\frac{x+c}{2}\right)\right|
$$

By the addition formulae

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have:

$$
f(x) - f(c)| = |\sin(x) - \sin(c)|
$$

=
$$
\left| 2\sin\left(\frac{x-c}{2}\right) \cos\left(\frac{x+c}{2}\right) \right|
$$

$$
\leq \left| 2\sin\left(\frac{x-c}{2}\right) \right|
$$

By the addition formulae

Cosine is bounded above by 1

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$
= $\left|2 \sin\left(\frac{x-c}{2}\right) \cos\left(\frac{x+c}{2}\right)\right|$ $\leq 2\sin\left(\frac{x-c}{2}\right)$ $\leq 2\left(\frac{x-c}{2}\right)$

By the addition formulae

Cosine is bounded above by 1

 $|\sin(x)| \leq |x|$

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$
= $\left|2 \sin \left(\frac{x - c}{2} \right) \cos \left(\frac{x + c}{2} \right) \right|$ formulae $\leq 2\sin\left(\frac{x-c}{2}\right)$ $\leq 2\left(\frac{x-c}{2}\right)$ $|\sin(x)| \leq |x|$ $= |x - c|$

By the addition

Cosine is bounded above by 1

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$
= $\left|2 \sin \left(\frac{x - c}{2} \right) \cos \left(\frac{x + c}{2} \right)\right|$ By the addition formulae $\leq 2\sin\left(\frac{x-c}{2}\right)$ Cosine is bounded above by 1 $\leq 2\left(\frac{x-c}{2}\right)$ $|\sin(x)| \leq |x|$ $= |x - c|$ $\langle \delta$

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$ $=\left|2\sin\left(\frac{x-c}{2}\right)\cos\left(\frac{x+c}{2}\right)\right|$ By the addition formulae $\leq 2\sin\left(\frac{x-c}{2}\right)$ Cosine is bounded above by 1 $\leq 2\left(\frac{x-c}{2}\right)$ $|\sin(x)| \leq |x|$ $= |x - c|$ $\langle \delta$ So, if $\delta = \varepsilon$, we have:

 $=\varepsilon$

Proof. Let $\varepsilon > 0$. Then, if $|x-c| < \delta$, we have: $|f(x) - f(c)| = |\sin(x) - \sin(c)|$ $=\left|2\sin\left(\frac{x-c}{2}\right)\cos\left(\frac{x+c}{2}\right)\right|$ By the addition formulae $\leq 2\sin\left(\frac{x-c}{2}\right)$ Cosine is bounded above by 1 $\leq 2\left(\frac{x-c}{2}\right)$ $|\sin(x)| \leq |x|$ $= |x - c|$ $\langle \delta$ So, if $\delta = \varepsilon$, we have:

 $=\varepsilon$

Proof. Let $\epsilon > 0$, and pick $\delta = \epsilon$. Then, if $|x-c| < \delta$, we have:

$$
|f(x) - f(c)| = |\sin(x) - \sin(c)|
$$

=
$$
\left| 2 \sin\left(\frac{x - c}{2}\right) \cos\left(\frac{x + c}{2}\right) \right|
$$

$$
\leq \left| 2 \sin\left(\frac{x - c}{2}\right) \right|
$$

$$
\leq \left| 2 \left(\frac{x - c}{2} \right) \right|
$$

=
$$
|x - c|
$$

$$
\leq \delta
$$

=
$$
\varepsilon
$$

By the addition formulae

Cosine is bounded above by 1

 $|\sin(x)| \leq |x|$

$$
f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

$$
f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

A function $f: X \to \mathbb{R}$ is *discontinuous* at *c* if

there exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in X$ such that

$$
|x - c| < \delta \quad \text{but} \quad |f(x) - f(c)| \nless \varepsilon
$$

Proof. Let
$$
\varepsilon = \frac{1}{2}
$$
, $\delta > 0$ and choose $x = -\frac{\delta}{2}$.

Proof. Let
$$
\varepsilon = \frac{1}{2}
$$
, $\delta > 0$ and choose $x = -\frac{\delta}{2}$. Then,
\n
$$
|x - c| = \left| -\frac{\delta}{2} - 0 \right|
$$
\n
$$
= \frac{\delta}{2}
$$
\n
$$
< \delta
$$

Proof. Let
$$
\varepsilon = \frac{1}{2}
$$
, $\delta > 0$ and choose $x = -\frac{\delta}{2}$. Then,
\n
$$
|x - c| = \left| -\frac{\delta}{2} - 0 \right|
$$
\n
$$
= \frac{\delta}{2}
$$
\n
$$
< \delta
$$

But,

$$
|f(x) - f(c)| = |0 - 1|
$$

= 1
 \nless

so *f* is discontinuous at 0.

Continuity

A function $f: X \to \mathbb{R}$ is *continuous* at *c* if

for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in X$,

$$
|x-c| < \delta \Rightarrow |f(x)-f(c)| < \varepsilon
$$

Continuity

A function $f: X \to \mathbb{R}$ is *sequentially continuous* at *c* if

for all sequences $(x_n) \subseteq X$ that converge to c , $\lim_{n\to\infty} f(x_n) = f(c)$

$$
f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}
$$

Proof. Let $c = 0$ and let (x_n) be a sequence converging to c. Then, $\lim_{n \to \infty} f(x_n) = 0$
= $f(0)$

so *f* is continuous at 0.

Proof. Let $c = 0$ and let (x_n) be a sequence converging to c. Then,

$$
\lim_{n \to \infty} f(x_n) = 0
$$

= $f(0$

so *f* is continuous at 0. Suppose otherwise that $c \in \mathbb{Q}^*$, and let $(x_n) \subseteq \mathbb{R} \setminus \mathbb{Q}$ be defined by:

$$
x_n := c + \frac{\sqrt{2}}{n}
$$

Then,

$$
\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0
$$

$$
= 0
$$

$$
\neq c
$$

$$
= f(c)
$$

so f is discontinuous on \mathbb{Q}^* .

Now suppose $c \in \mathbb{R} \setminus \overline{\mathbb{Q}}$ and let $(x_n) \subseteq \overline{\mathbb{Q}}$ be defined by:

$$
x_n := \frac{\lfloor c \cdot 10^n \rfloor}{10^n}
$$

Then,

$$
\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n
$$

$$
= c
$$

$$
\neq 0
$$

$$
= f(c)
$$

so *f* is discontinuous on $\mathbb{R} \setminus \mathbb{Q}$.

Consider $c = 0$ and let $\varepsilon > 0$. Pick $\delta = \frac{1}{2}$.

Consider
$$
c = 0
$$
 and let $\varepsilon > 0$.
Pick $\delta = \frac{1}{2}$. Then, if $|x - c| < \delta$, we necessarily have $x = c$, and hence:

$$
|f(x) - f(c)| = |f(c) - f(c)|
$$

= 0

$$
< \varepsilon
$$

so *f* is continuous at 0.

An aside from Aris

– intermission –

An aside from Aris – intermission –

Recall from Assignment 2, Q12:

Define a sequence (a_n) by:

$$
a_1 = \sqrt{3}
$$

$$
a_{n+1} = \sqrt{a_n + 2}
$$

Assume that $(a_n) \to \ell$, and deduce the value of ℓ .

$$
\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{a_n + 2}
$$

$$
\ell = \sqrt{\ell + 2}
$$

An aside from Aris – intermission –

Define a sequence (a_n) by:

$$
a_1 = 1
$$

$$
a_{n+1} = \text{sgn}\left(\frac{a_n}{n}\right)
$$

Assume that $(a_n) \to \ell$, and deduce the value of ℓ .

$$
\lim_{n \to \infty} \text{sgn}\left(\frac{a_n}{n}\right) = \lim_{n \to \infty} 1
$$

$$
= 1
$$

$$
sgn\left(\lim_{n\to\infty}\frac{a_n}{n}\right) = sgn(0)
$$

$$
= 0
$$

And of the aside End of the aside

– intermission – – intermission end –

Intermediate Value Theorem

Theorem (IVT). Suppose that *f* is continuous on [a, b], and that $f(a) < f(b)$. For any *k* satisfying $f(a) < k < f(b)$ there exists $c \in (a, b)$ such that $f(c) = k$. *Exercise.* Let $f:[1,3] \to \mathbb{R}$ be continuous, satisfying $f(1) = 2, f(2) = 3$, and $f(3) = 1$. Prove that f has a fixed point in [1, 3].

Exercise. Let $f:[1,3] \to \mathbb{R}$ be continuous, satisfying $f(1) = 2, f(2) = 3$, and $f(3) = 1$. Prove that f has a fixed point in [1, 3].

Proof. Define $q:[1,3] \rightarrow \mathbb{R}$ by

$$
g(x) := f(x) - x
$$

Note that *g* is continuous as the sum of continuous functions, and that $g(3) < 0$ and $g(1) > 0$. By the IVT, there exists $c \in (1,3)$ such that $g(c) = 0$, so $f(c) = c$.

Extreme Value Theorem

Theorem (EVT). Suppose that *f* is continuous on [a, b]. Then, *f* is bounded and attains its bounds. That is, there exist numbers $x_*, x^* \in [a, b]$ such that for all $x \in [a, b]$, we have $f(x_*) \le f(x) \le f(x^*)$.

Exercise. Suppose that $f : [0, \infty) \to \mathbb{R}$ is continuous, and there exist $M, R > 0$ such that for all $x \geq R$, *f* satisfies $|f(x)| \leq M$. Prove that *f* is bounded.

Exercise. Suppose that $f : [0, \infty) \to \mathbb{R}$ is continuous, and there exist $M, R > 0$ such that for all $x \geq R$, *f* satisfies $|f(x)| \leq M$. Prove that *f* is bounded.

Proof. Consider the restriction of f to [0, R]. By the EVT, this restriction is bounded. That is, there exists $M' > 0$ such that for all $x \in [0, R]$, we have

 $|f(x)| \leq M'$

Then, $M'' = \max\{M, M'\}\$ bounds *f* everywhere.

Completeness Axioms

Axiom (LUB)*.* Every bounded above increasing sequence converges.

Axiom (GLB)*.* Every bounded below decreasing sequence converges.

Axiom (Cauchy Completeness)*.* Every Cauchy sequence converges.

Axiom (B–W)*.* (Covered later.)

Exercise. Every bounded below decreasing sequence converges to its infimum.

Exercise. Every bounded below decreasing sequence converges to its infimum.

Proof. Let (a_n) be a bounded below decreasing sequence, and let *L* be its infimum. Let $\varepsilon > 0$, and consider $L + \varepsilon$.

Proof. Let (a_n) be a bounded below decreasing sequence, and let *L* be its infimum. Let $\varepsilon > 0$, and consider $L + \varepsilon$.

Because L is the infimum, there exists N such that $L \le a_N < L + \varepsilon$. Because the sequence is decreasing, all following terms also satisfy this inequality, so we have

$$
|a_n - L| < \varepsilon
$$

for all $n > N$.

Bolzano–Weierstrass Theorem

Theorem (B–W). Any bounded sequence of real numbers has a convergent subsequence.

 $Exercise. Suppose (a_n)$ does not diverge to infinity or negative infinity. Prove that (a_n) has a subsequence that is bounded above.

Exercise. Suppose \overline{a}_n does not diverge to infinity or negative infinity. Prove that (a_n) has a subsequence that is bounded above.

Proof. If (a_n) does not diverge to infinity, then there exists $M > 0$ such that for all $N \in \mathbb{N}$, there exists $n \geq N$ such that $a_n \leq M$. We now construct a subsequence by picking one such term of (a_n) for each $N \in \mathbb{N}$.

Exercise. Suppose $\alpha \in (0,1)$ is irrational. Let $\left(\frac{p_n}{q}\right)$ be a rational sequence that converges to α . Show that $(q_n) \to \infty$.

Exercise. Suppose $\alpha \in (0, 1)$ is irrational. Let $\left(\frac{p_n}{q_n}\right)$ be a rational sequence that converges to α . Show that $(q_n) \to \infty$.

Proof. We prove this by contradiction. Suppose instead that $(q_n) \nrightarrow \infty$. By the previous question, there exists a subsequence (q_{n_k}) that is bounded.

Exercise. Suppose $\alpha \in (0, 1)$ is irrational. Let $\left(\frac{p_n}{q_n}\right)$ be a rational sequence that converges to α . Show that $(q_n) \to \infty$.

Proof. We prove this by contradiction. Suppose instead that $(q_n) \nrightarrow \infty$. By the previous question, there exists a subsequence (q_{n_k}) that is bounded.

By the Bolzano–Weierstrass theorem, this subsequence has a convergent subsequence, say $(q_{n_{k_i}})$. Suppose this converges to some $q \in \mathbb{N}$.

Exercise. Suppose $\alpha \in (0,1)$ is irrational. Let $\left(\frac{p_n}{q}\right)$ be a rational sequence that converges to α . Show that $(q_n) \to \infty$.

Proof. We prove this by contradiction. Suppose instead that $(q_n) \nrightarrow \infty$. By the previous question, there exists a subsequence (q_{n_k}) that is bounded. By the Bolzano–Weierstrass theorem, this subsequence has a convergent subsequence, say $(q_{n_{k_i}})$. Suppose this converges to some $q \in \mathbb{N}$. Consider the corresponding subsequence $(p_{n_{k_i}})$. We wish to show that this converges to αq . Note that $(p_{n_{k_i}})$ must also converge to a natural number.

Exercise. Suppose $\alpha \in (0,1)$ is irrational. Let $\left(\frac{p_n}{q}\right)$ be a rational sequence that converges to α . Show that $(q_n) \to \infty$.

Proof. We prove this by contradiction. Suppose instead that $(q_n) \nrightarrow \infty$. By the previous question, there exists a subsequence (q_{n_k}) that is bounded. By the Bolzano–Weierstrass theorem, this subsequence has a convergent subsequence, say $(q_{n_{k_i}})$. Suppose this converges to some $q \in \mathbb{N}$. Consider the corresponding subsequence $(p_{n_{k_i}})$. We wish to show that this converges to αq . Note that $\overline{(p_{n_{k_i}})}$ must also converge to a natural number. We can write $p_{n_{k_i}} = \frac{p_{n_{k_i}}}{q_{n_{k_i}}} q_{n_{k_i}}$ and then use the product rule for convergent sequences.

But α is irrational, so αq is irrational.

Series Convergence Tests

8 $n^2 + 3n + 1$ $n=1$ ∞ $n \log n$ $n=2$ ∞ $\cos(\pi n)$ $\overline{n^2}$ $n=1$ ∞ $n!$ n^n $n=1$

8 $\setminus n$ $n=1$ ∞ $\frac{n^2}{2}$ $\overline{n!}$ $n=1$ ∞ $\sin(n)$ \boldsymbol{n} $n=1$ ∞ $n^{\bm n}$ $\overline{(n!)^2}$ $n=1$

 ∞ $n=1$ ∞ $\sin(n)$ $\overline{n^2}$ $n=1$ ∞ $\overline{n+1}$ \sum \boldsymbol{n} $\overline{n=1}$ ∞ $+3^n$ $2n$ $\overline{5^n}$ $n=1$